Math 2A - Vector Calculus - Final Exam - fall '09
Name \qquad
Show your work for credit. Do not use a calculator. Write all responses on separate paper.

1. Derive the formula for the distance $\mathrm{d}(P, L)$ between a point $P(x, y, 0)$ and a line L through $P_{0}\left(x_{0}, y_{0}, 0\right)$ and $P_{1}\left(x_{1}, y_{1}, 0\right)$ in 3D by the following steps:
a. Compute $\left|{\overrightarrow{P_{0} P}}_{1} \times \overrightarrow{P_{0} P}\right|$ in terms
of x, y, x_{0}, y_{0}, and x_{1}, y_{1}.
b. Use the fact that the area of the parallelogram with edges ${\overrightarrow{P_{0} P}}_{1}$ and $\overrightarrow{P_{0} P}$ is base*height to find a formula for the distance from P to L.

2. Consider the curve $\vec{r}(t)=\langle 5 \sin t, 12 t, 5 \cos t\rangle$
a. Find the unit tangent vector as a function of t.
b. Find the curvature at $t=0$.
c. Find a vector parallel to the normal to the curve at $t=0$.
d. Parameterize the osculating circle at $t=0$.
3. Consider the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=4$.
a. Show that this surface is described by the spherical function $\rho=\frac{2}{\sqrt{1+3 \sin ^{2} \phi}}$

Hint: $4 x^{2}+4 y^{2}+z^{2}=\left(x^{2}+3 x^{2}\right)+\left(y^{2}+3 y^{2}\right)+z^{2}=4$.
b. Find a parameterization of the ellipsoid surface in terms of spherical coordinates θ and \varnothing.

Hint: recall that $\langle x, y, z\rangle=\langle\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi\rangle$
c. Find an equation for the tangent plane at $(x, y, z)=\left(\frac{\sqrt{6}}{4}, \frac{\sqrt{6}}{4}, 1\right)$
4. Show that the ellipsoid $3 x^{2}+2 y^{2}+z^{2}=9$ and the sphere $x^{2}+y^{2}+z^{2}-8 x-6 y-8 z+24=0$ are tangent to each other at the point $(1,1,2)$.
5. Find the points on the surface $f(x, y)=\frac{y^{2}-9}{x}$ that are closest to the origin. Hint: In terms of the Lagrange multiplier method, this is equivalent to minimizing $x^{2}+y^{2}+z^{2}$ subject to the constraint $z=\frac{y^{2}-9}{x}$
6. Find the volume of the region below the surface $z=x e^{y}$ and above the portion of the disk $x^{2}+y^{2}=25$ in the first quadrant.
7. Find the flux of $\vec{F}=\langle x, y,-2 z\rangle$ out of the surface S of the cube

$$
C=\{(x, y, z) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1\}
$$

8. Consider the region R in the first quadrant bounded by $r=\sin (3 \theta)$
a. Write $\iint_{R} \delta(r, \theta) d A$ as an iterated integral.
b. Find the area of the region.
c. Find the mass of the region with density function $\delta(r, \theta)=r$

9. Consider the surface described by the paraboloid $z=16-x^{2}-y^{2}$ for $z \geq 0$, as shown below. Verify Stokes' Theorem for this surface and the vector field $\vec{F}=\langle 3 y, 4 z,-6 x\rangle$. That is, evaluate both sides of the equation $\oint_{C} \vec{F} \cdot \overrightarrow{d r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \overrightarrow{d S}$ and show they are equal.

10. Use the Divergence Theorem to compute the surface integral $\iint_{S} \vec{F} \cdot \overrightarrow{d S}$ where the surface S is the sphere $x^{2}+y^{2}+z^{2}=1$ and the vector field is $\vec{F}=\left\langle x^{3}, y^{3}, z^{3}\right\rangle$.

Math 2A - Vector Calculus - Final Exam Solutions - fall '09

1. Derive the formula for the distance $\mathrm{d}(P, L)$ between a point $P(x, y, 0)$ and a line L through $P_{0}\left(x_{0}, y_{0}, 0\right)$ and $P_{1}\left(x_{1}, y_{1}, 0\right)$ in 3D by the following steps:
a. Compute $\left|{\overrightarrow{P_{0} P}}_{1} \times \overrightarrow{P_{0} P}\right|$ in terms
of x, y, x_{0}, y_{0}, and x_{1}, y_{1}.
SOLN:

$$
\left|\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P}\right|=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
x_{1}-x_{0} & y_{1}-y_{0} & 0 \\
x-x_{0} & y-y_{0} & 0
\end{array}\right|=\left|\left\langle 0,0,\left(x_{1}-x_{0}\right)\left(y-y_{0}\right)-\left(y_{1}-y_{0}\right)\left(x-x_{0}\right)\right\rangle\right|
$$

b. Use the fact that the area of the parallelogram with edges ${\overrightarrow{P_{0} P}}_{1}$ and $\overrightarrow{P_{0} P}$ is base*height to find a formula for the distance from P to L.
SOLN: $\left(x_{1}-x_{0}\right)\left(y-y_{0}\right)-\left(y_{1}-y_{0}\right)\left(x-x_{0}\right)=$
$d(P, L)\left|P_{0} P_{1}\right|=d(P, L) \sqrt{\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}}=\left|\left(x_{1}-x_{0}\right)\left(y-y_{0}\right)+\left(y_{1}-y_{0}\right)\left(x-x_{0}\right)\right|$
So $d(P, L)=\frac{\left|\left(x_{1}-x_{0}\right)\left(y-y_{0}\right)+\left(y_{1}-y_{0}\right)\left(x-x_{0}\right)\right|}{\sqrt{\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}}} \quad$ If you let $a=x_{1}-x_{0}, b=y_{1}-y_{0}$,
and $c=y_{0}\left(x_{0}-x_{1}\right)+x_{0}\left(y_{0}-y_{1}\right)$ then the formula becomes $d=\frac{|a y+b x+c|}{\sqrt{a^{2}+b^{2}}}$
2. Consider the curve $\vec{r}(t)=\langle 5 \sin t, 12 t, 5 \cos t\rangle$
a. Find the unit tangent vector as a function of t.

SOLN: $\vec{r}^{\prime}(t)=\langle 5 \cos t, 12,-5 \sin t\rangle \Rightarrow \hat{T}(t)=\frac{\langle 5 \cos t, 12,-5 \sin t\rangle}{13}$
b. Find the curvature at $t=0$.

SOLN: $\kappa=\left|\frac{d \hat{T}}{d s}\right|=\left|\frac{d \hat{T} / d t}{d s / d t}\right|=\frac{|\langle-5 \sin t, 0,-5 \cos t\rangle|}{\left|\vec{r}^{\prime}(t)\right|^{2}}=\frac{5}{169}$ So the curvature is constant.
c. Find a vector parallel to the normal to the curve at $t=0$.

SOLN: $\frac{d \hat{T}}{d t}=\langle-5 \sin t, 0,-5 \cos t\rangle$ so $\langle-\sin t, 0,-\cos t\rangle$ is parallel to the normal curve -oh , and it has length $=1$, so it is the normal vector and at $t=0, \hat{N}=\langle 0,0,-1\rangle$
d. Parameterize the osculating circle at $t=0$.

SOLN: When $t=0, \vec{r}(0)=\langle 0,0,5\rangle, \hat{N}=\langle 0,0,-1\rangle$ and the radius of the circle is 33.8 , so the center of the circle is $(0,0,-28.8)$. To get the equation of the circle we need to stay in the
osculating plane, which is spanned by $\hat{T}(0)=\frac{\langle 5,12,0\rangle}{13}$ and $\hat{N}=\langle 0,0,-1\rangle$ which shows that a normal to the osculating plane is the vector $\langle-12,5,0\rangle$ so the osculating plane is the $\mathrm{y} z$-plane where $x=0$. Thus an equation for the osculating circle is the intersection of the plane $12 x-5 y=$ 0 with the sphere $x^{2}+y^{2}+(z+28.8)^{2}=(33.8)^{2}$. Solving the first equation for y and substituting into the second, we have $x^{2}+\frac{144}{25} x^{2}+\left(z+\frac{144}{5}\right)^{2}=\frac{169^{2}}{25} \Leftrightarrow\left(\frac{x}{13}\right)^{2}+\left(\frac{z+\frac{144}{25}}{\frac{169}{5}}\right)^{2}=1$, which can be parameterized by $\vec{u}(t)=\left\langle 13 \cos t, \frac{156}{5} \cos t, \frac{169}{5} \sin t-\frac{144}{25}\right\rangle$.
To check, use the Mathematica code, ParametricPlot3D[\{\{5* $\operatorname{Sin}[t], 12 * t, 5 * \operatorname{Cos}[t]\},\{13 *$ $\operatorname{Cos}[t], 31.2 * \operatorname{Cos}[t],-28.8+33.8 * \operatorname{Sin}[t]\}\},\{t,-6,6\}]$

3. Consider the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=4$.
a. Show that this surface is described by the spherical function $\rho=\frac{2}{\sqrt{1+3 \sin ^{2} \phi}}$

SOLN: $4 x^{2}+4 y^{2}+z^{2}=\left(x^{2}+3 x^{2}\right)+\left(y^{2}+3 y^{2}\right)+z^{2}=x^{2}+y^{2}+z^{2}+3 x^{2}+3 y^{2}=\rho^{2}+3 r^{2}=4$ so that, substituting, $\rho=r \sin \varnothing$, we have $\rho^{2}\left(1+3(\sin \varnothing)^{2}\right)=4$ and the result follows.
b. Find a parameterization of the ellipsoid surface in terms of spherical coordinates θ and \varnothing.

Hint: recall that $\langle x, y, z\rangle=\langle\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi\rangle$
$\operatorname{SOLN}:\langle x, y, z\rangle=\left\langle\frac{2 \cos \theta \sin \phi}{\sqrt{1+3 \sin ^{2} \phi}}, \frac{2 \sin \theta \sin \phi}{\sqrt{1+3 \sin ^{2} \phi}}, \frac{2 \cos \phi}{\sqrt{1+3 \sin ^{2} \phi}}\right\rangle$
c. Find an equation for the tangent plane at $(x, y, z)=\left(\frac{\sqrt{6}}{4}, \frac{\sqrt{6}}{4}, 1\right)$

SOLN: The simplest approach here would be to use gradient vector
$\overrightarrow{\nabla f}=\langle 8 x, 8 y, 2 z\rangle\left(\frac{\sqrt{6}}{4}, \frac{\sqrt{6}}{4}, 1\right)=2\langle\sqrt{6}, \sqrt{6}, 1\rangle$ as a normal so the equation is $\sqrt{6} x+\sqrt{6} y+z=4$
4. Show that the ellipsoid $3 x^{2}+2 y^{2}+z^{2}=9$ and the sphere $x^{2}+y^{2}+z^{2}-8 x-6 y-8 z+24=0$ are tangent to each other at the point $(1,1,2)$.
SOLN: It is sufficient to observe that the gradients are parallel. The gradient of the ellipsoid is $\overrightarrow{\nabla f}=\langle 6 x, 4 y, 2 z\rangle_{(1,1,2)}=\langle 6,4,4\rangle$ while the gradient of the sphere is $\overrightarrow{\nabla g}=\left.\langle 2 x-8,2 y-6,2 z-8\rangle\right|_{(1,1,2)}=-\langle 6,4,4\rangle$, so indeed they are parallel.
5. Find the points on the surface $f(x, y)=\frac{y^{2}-9}{x}$ that are closest to the origin.

SOLN: The simpler way to do this, as I see it, is to substitute $z=\frac{y^{2}-9}{x}$ into the objective function and then find the critical points and check them with the second derivative test. Substituting, we get $f(x, y)=x^{2}+y^{2}+\frac{\left(y^{2}-9\right)^{2}}{x^{2}}$ so setting the partial derivatives to zero we get
$f_{x}=2 x-\frac{2\left(y^{2}-9\right)^{2}}{x^{3}}=0 \Leftarrow x^{4}-\left(y^{2}-9\right)^{2}=0 \Leftrightarrow y^{2}-9= \pm x^{2}$
$f_{y}=2 y+\frac{4 y\left(y^{2}-9\right)}{x^{2}}=2 y\left(1+\frac{2\left(y^{2}-9\right)}{x^{2}}\right)=0$. Thus either $y=0$ or $1+\frac{2\left(y^{2}-9\right)}{x^{2}}=0$.
Substituting $y^{2}-9= \pm x^{2}$ we have $1 \pm \frac{2 x^{2}}{x^{2}}=0$, which isn't going to happen. So $y=0$ and thus $(x, y)=(\pm 3,0)$ are the critical points where $f(\pm 3,0)=\frac{-9}{ \pm 3}=\mp 3$ and the critical points are $(3,0,-3)$
and $(-3,0,3)$. Now, it turns out the discriminant here is

$$
f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=\left(2+\frac{6\left(y^{2}-9\right)^{2}}{x^{4}}\right)\left(2+\frac{12 y^{2}-36}{x^{2}}\right)-\left.\left(-\frac{8 y\left(y^{2}-9\right)}{x^{3}}\right)^{2}\right|_{(x, y)=(\pm 3,0)}=(8)(-2)-0<0
$$

so these are saddle points. Thus there is no minimum value. However, there is a lower bound on the set of distances. If you approach $x=0$ along the paths $y^{2} \pm x^{2}=9$ the $\lim _{x \rightarrow 0} z=\lim _{x \rightarrow 0} \frac{9 \pm x^{2}-9}{x}=0$ you get to the point $(0,3,0)$ which is a limiting point on the surface, but not actually on the surface, since $x=0$. Thus 3 is a lower bound on the distance.

Alternatively, one could use Lagrange multipliers. You formulate the problem by saying you want to minimize $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the constraint $g(x, y, z)=z-\frac{y^{2}-9}{x}=0$. At the optimal point the tangent planes are parallel, so $\overrightarrow{\nabla f}=\lambda \overrightarrow{\nabla g} \Leftrightarrow\langle 2 x, 2 y, 2 z\rangle=\lambda\left\langle\frac{y^{2}-9}{x^{2}},-\frac{2 y}{x}, 1\right\rangle$
which leads to the four equations in 4 unknowns shown below. The second equation says that either
$2 x=\frac{\lambda\left(y^{2}-9\right)}{x^{2}}$
$y=-\frac{\lambda y}{x}$
$2 z=\lambda$
$z=\frac{y^{2}-9}{x}$

$$
\mathrm{p} 7=\operatorname{Plot3D}\left[\left(y^{\wedge} 2-9\right) / x,\{x,-5,5\},\{y,-5,5\}, \text { PlotRange } \rightarrow\{-5,5\}\right]
$$

Finally, it should be noted that the surface $x z=y^{2}-9$ is a tilted hyperboloid of one sheet with removable discontinuities where $x=0$. Maybe in Linear Algebra you'll learn to rotate it to perpendicular.
6. Find the volume of the region below the surface $z=x e^{y}$ and above the portion of the disk $x^{2}+y^{2}=25$ in the first quadrant.
SOLN: Using cylindrical coordinates, $z=r \cos \theta e^{r \sin \theta}$ and the region is bounded by
$0 \leq r \leq 5$ and $0 \leq \theta \leq \pi / 2$ so the integral is $\int_{0}^{5} \int_{0}^{\pi / 2} r \cos \theta e^{r \sin \theta} r d \theta d r=\int_{0}^{5} \int_{0}^{1} r^{2} e^{r u} d u d r=$
$\int_{0}^{5} r e^{r}-r d r=\left.r e^{r}\right|_{0} ^{5}-\int_{0}^{5} e^{r} d r-\frac{25}{2}=5 e^{5}-e^{5}+1-\frac{25}{2}=4 e^{5}-\frac{23}{2}$
7. Find the flux of $\vec{F}=\langle x, y,-2 z\rangle$ out of the surface S of the cube
$C=\{(x, y, z) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1\}$
SOLN: The simplest way to work this is to use the divergence theorem and note that the divergence of \vec{F} is $\vec{\nabla} \cdot \vec{F}=1+1-2=0$ so the flux must be zero. To evaluate the surface integrals directly means $\oiint_{S} \vec{F} \cdot \overrightarrow{d S}=\iint_{x=0} \vec{F} \cdot \overrightarrow{d S}+\iint_{x=1} \vec{F} \cdot \overrightarrow{d S}+\iint_{y=0} \vec{F} \cdot \overrightarrow{d S}+\iint_{y=1} \vec{F} \cdot \overrightarrow{d S}+\iint_{z=0} \vec{F} \cdot \overrightarrow{d S}+\iint_{z=1} \vec{F} \cdot \overrightarrow{d S}$
$=\iint_{x=0}\langle 0, y,-2 z\rangle \cdot\langle-1,0,0\rangle d A+\int_{0}^{1} \int_{0}^{1}\langle 1, y, z\rangle \cdot\langle 1,0,0\rangle d y d z$
$+\iint_{y=0}\langle x, 0,-2 z\rangle \cdot\langle 0,-1,0\rangle d A+\int_{0}^{1} \int_{0}^{1}\langle x, 1, z\rangle \cdot\langle 0,1,0\rangle d x d z$
$+\iint_{z=0}\langle x, y, 0\rangle \cdot\langle 0,0,-1\rangle d A+\int_{0}^{1} \int_{0}^{1}\langle x, y,-2\rangle \cdot\langle 0,0,1\rangle d x d y=0+1+0+1+0-2=0$.
8. Consider the region R in the first quadrant bounded by $r=$ $\sin (3 \theta)$
a. Write $\iint_{R} \delta(r, \theta) d A$ as an iterated integral.

SOLN: $\int_{0}^{\pi / 3} \int_{0}^{\sin 3 \theta} \delta(r, \theta) r d r d \theta$
b. Find the area of the region.

$$
\int_{0}^{\pi / 3} \int_{0}^{\sin 3 \theta} r d r d \theta=\int_{0}^{\pi / 3} \frac{\sin ^{2} 3 \theta}{2} d \theta=\int_{0}^{\pi / 3} \frac{1-\cos 6 \theta}{4} d \theta=\frac{\pi}{12}
$$

c. Find the mass of the region with density function $\delta(r, \theta)=r$

SOLN: $\int_{0}^{\pi / 3} \int_{0}^{\sin 3 \theta} r^{2} d r d \theta=\frac{1}{3} \int_{0}^{\pi / 3} \sin ^{3} 3 \theta d \theta=\frac{1}{3} \int_{0}^{\pi / 3} \sin 3 \theta-\sin 3 \theta \cos ^{2} 3 \theta d \theta$
$=-\left.\frac{1}{9} \cos 3 \theta\right|_{0} ^{\pi / 3}+\frac{1}{9} \int_{1}^{-1} u^{3} d u=\frac{1}{9}+\frac{1}{9}+\left.\frac{u^{4}}{36}\right|_{1} ^{-1}=\frac{2}{9}$
9. Consider the surface described by the paraboloid $z=16-x^{2}-y^{2}$ for $z \geq 0$, as shown below.

Verify Stokes' Theorem for this surface and the vector field $\vec{F}=\langle 3 y, 4 z,-6 x\rangle$. That is, evaluate both sides of the equation and show they are equal.

SOLN: $\vec{r}(t)=\langle 4 \cos t, 4 \sin t\rangle \Rightarrow \vec{r}^{\prime}(t)=\langle-4 \sin t, 4 \cos t\rangle$ so that
$\oint_{C} \vec{F} \cdot \overrightarrow{d r}=\int_{0}^{2 \pi}\langle 12 \sin t, 0,-24 \cos t\rangle\langle-4 \sin t, 4 \cos t, 0\rangle d t=-48 \int_{0}^{2 \pi} \sin ^{2} t d t=-48 \pi$
Now the surface is $\vec{r}(x, y)=\left\langle x, y, 16-x^{2}-y^{2}\right\rangle$ so a measure of the scaled infinitesimal surface
normal is $\overrightarrow{d S}=\left(\vec{r}_{x} \times \vec{r}_{y}\right) d x d y=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & -2 x \\ 0 & 1 & -2 y\end{array}\right| d x d y=\langle 2 x, 2 y, 1\rangle d x d y$ so that

$$
\begin{aligned}
\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \overrightarrow{d S} & =\iint_{S}\langle-4,6,-3\rangle \cdot \overrightarrow{d S}=\int_{-4}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}}\langle-4,6,-3\rangle \cdot\langle 2 x, 2 y, 1\rangle d x d y \\
& =\int_{0}^{4} \int_{0}^{2 \pi}-8 r^{2} \cos \theta+12 r^{2} \sin \theta-3 r d \theta d r=-6 \pi \int_{0}^{4} r d r=-48 \pi
\end{aligned}
$$

10. Use the Divergence Theorem to compute the surface integral $\iint_{S} \vec{F} \cdot \overrightarrow{d S}$ where the surface S is the sphere $x^{2}+y^{2}+z^{2}=1$ and the vector field is $\vec{F}=\left\langle x^{3}, y^{3}, z^{3}\right\rangle$.
SOLN:L
$\iint_{S} \vec{F} \cdot \overrightarrow{d S}=\iiint_{E} \vec{\nabla} \cdot \vec{F} d V=\iiint_{E} 3 x^{2}+3 y^{2}+3 z^{2} d V=3 \int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\pi} \rho^{4} \sin \phi d \phi d \theta d \rho=-\left.\frac{6 \pi}{5} \cos \phi\right|_{0} ^{\pi}=\frac{12 \pi}{5}$
